Solutions to tutorial exercises for stochastic processes

T1. Let $G(x, y)$ be the Green function of the Markov chain. Let x be the recurrent state, so that $G(x, x)=\infty$. We will show that state y is recurrent by showing that $G(y, y)=\infty$. Let $t, s \geq 0$. We use the Chapman-Kolmogorov equation twice to obtain

$$
p_{2 t+s}(y, y) \geq p_{t}(y, x) p_{t+s}(x, y) \geq p_{t}(y, x) p_{s}(x, x) p_{t}(x, y)
$$

Therefore,

$$
G(y, y)=\int_{0}^{\infty} p_{s}(y, y) \mathrm{d} s \geq \int_{2 t}^{\infty} p_{s}(y, y) \mathrm{d} s=\int_{0}^{\infty} p_{2 t+s}(y, y) \mathrm{d} s \geq p_{t}(y, x) G(x, x) p_{t}(x, y)
$$

Since the Markov chain is irreducible we have $p_{t}(y, x), p_{t}(x, y)>0$, we conclude that $G(y, y)=\infty$.
$T 2$. ' \Rightarrow ': Using strict stationarity of the Markov chain we find

$$
\pi(x)=\mathbb{P}\left(X_{0}=x\right)=\mathbb{P}\left(X_{t}=x\right)=\sum_{x_{0} \in S} \mathbb{P}\left(X_{t}=x, X_{0}=x_{0}\right)=\sum_{x_{0} \in S} \pi\left(x_{0}\right) p_{t}\left(x_{0}, x\right),
$$

so $\pi(\cdot)$ is invariant.
$' \Leftarrow$ ': Let $n \in \mathbb{N}, 0 \leq t_{1}<t_{2}<\cdots<t_{n}$ and $s>0$. Let $x_{1}, \ldots, x_{n} \in S$. We use the invariance property of $\pi(\cdot)$ to obtain

$$
\begin{aligned}
\mathbb{P}\left(X_{t_{1}+s}=x_{1}, \ldots, X_{t_{n}+s}=x_{n}\right) & =\sum_{x_{0} \in S} \pi\left(x_{0}\right) p_{t_{1}+s}\left(x_{0}, x_{1}\right) p_{t_{2}-t_{1}}\left(x_{1}, x_{2}\right) \ldots p_{t_{n}-t_{n-1}}\left(x_{n-1}, x_{n}\right) \\
& =\pi\left(x_{1}\right) p_{t_{2}-t_{1}}\left(x_{1}, x_{2}\right) \ldots p_{t_{n}-t_{n-1}}\left(x_{n-1}, x_{n}\right),
\end{aligned}
$$

which is independent of s, so the Markov chain is strictly stationary.

T3. Let f be a non-negative harmonic function for X. Then

$$
|f(x)|=f(x)=\mathbb{E}[f(x)]=\mathbb{E}[|f(x)|]<\infty,
$$

so that f is bounded. Since X is irreducible and recurrent it follows that every bounded harmonic function for X is constant.

T4. ' \Rightarrow ': By reversibility we have

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \pi(x) p_{t}(x, y)\right|_{t=0} & =\left.\frac{\mathrm{d}}{\mathrm{~d} t} \pi(y) p_{t}(y, x)\right|_{t=0} & & \forall x, y \in S \\
\pi(x) q(x, y) & =\pi(y) q(y, x) & & \forall x, y \in S
\end{aligned}
$$

' \Leftarrow ': Assume that $\pi(x) q(x, y)=\pi(y) q(y, x)$ for all $x, y \in S$. This can be stated as

$$
\left(\begin{array}{ccc}
\pi(1) & & \\
& \ddots & \\
& & \pi(n)
\end{array}\right) Q=Q^{T}\left(\begin{array}{ccc}
\pi(1) & & \\
& \ddots & \\
& & \pi(n)
\end{array}\right)
$$

Since S is finite the transition probabilities P_{t} are given by $\exp (t Q)$. Therefore

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\pi(1) & & \\
& \ddots & \\
& & \pi(n)
\end{array}\right) P_{t}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!}\left(\begin{array}{lll}
\pi(1) & & \\
& \ddots & \\
& & \pi(n)
\end{array}\right) Q^{k} \\
& =\left(\begin{array}{ccc}
\pi(1) & & \\
& \ddots & \\
& & \pi(n)
\end{array}\right)+\sum_{k=1}^{\infty} \frac{t^{k}}{k!} Q^{T}\left(\begin{array}{ccc}
\pi(1) & & \\
& \ddots & \\
& & \pi(n)
\end{array}\right) Q^{k-1} \\
& =\sum_{k=0}^{\infty} \frac{t^{k}}{k!}\left(Q^{T}\right)^{k}\left(\begin{array}{lll}
\pi(1) & & \\
& \ddots & \\
& & \pi(n)
\end{array}\right) \\
& =e^{t Q^{T}}\left(\begin{array}{lll}
\pi(1) & & \\
& \ddots & \\
& & \pi(n)
\end{array}\right) \\
& =P_{t}^{T}\left(\begin{array}{lll}
\pi(1) & & \\
& \ddots & \\
& & \pi(n)
\end{array}\right) \text {. }
\end{aligned}
$$

It follows that $\pi(\cdot)$ is reversible.

